N %0 39838
NASA TECHNICAL TRANSLATION - "NASA TT F«13,253

7

"LUNAR SPRING-BOARD" EFFECT

Vicente Camarena

Translation of "L'Effet de "Tremplin Lunaire", La Recherche
Aerospatiale, No. 2, Mar-Apr, 1970, pp. 64668.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGION, D.C. 20546 SEPTEMBER 1970

#



"LUNAR SPRING~BOARD" EFFECT - F

Vicente Camarena

ABSTRACT. 'The problem of minimizing the sum of velocity
impulses to acfuire a given velocity starting from a low orbit
around the Earth and at a great distance from the Earth-Moon
distance. The "spring-board effect'” of the Moon is used
(passing near the Moon).

‘ In this case the problem can be decomposed into three
phases if the simplifying assumption of a lunar "activity
sphere" is used. These are: Earth-Moon transfer, hyperbolic
passage near the Moon, and acquisition of the particle veloc~

; ity at infinity. The method of optimizing each of these three

| } phases is discussed.

The simple case of '"grazing" flyby is studied (which
should not be far from the global optimum). This leads to a
- velocity impluse saving of 158 m/s at the most, compared with
direct ascent.

I. INTRODUCTION

Considering the cost of space experiments, the optimization of orbital

 maneuvers will obviously be of interest.

N For the!mgiérity of present-day rockets, the minimum propellent mass con—
sumption results by using "minimum characteristic velocity transfers(l)"o
- This 1s the case of chemical rockets and the case of the majority of nuclear-

 electric propulsion systems.

* o
Numbers in the marginindicate pagination in the original foreign text.

(I)The characteristic velocity is the integral of the thrust acceleration.

Cewy
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It is from this point of view that we will now study transfers starting
. from a low orbit around the Earth to a given hyperbolic velocity at the limit
of the "activity sphere" of the Earth. We will try to do this by taking ad-
vantage as much as possible of the gravitational field;of the Moon.

A simple case very close to the true optimum will be studied numerically.
II. NOTATION

angle of Vi, V2%0° < A < 1809
semi—deviation angle for a hyperbola which grazes the Moon with the

>

velocity at infinity of wn (A1=arc smﬁ%—‘—,) (Figure 1).
o angle of Vi Vi (0 <a <893 3, 15"). -
Cd characteristic velocity of "direct ascent".
Cu characteristic velocity of the transfer with passage near the Moon.
E savings due to the lunar spring—board effect (E = Cd - Cd)'
e relative saving ( Ca _-C)
, . c,

H hyperbola of the velocity hodagraph %ﬁo

"L ‘libration rate of the Earth at the distance R.
L' 1libration rate of the Moon on the Earth.
L libration rate of the Earth at the distance r

(1%

radius of the low orbit 0Bo

==}

radius of the Lunar orbit.
Moon (satellite)

Earth.
escape velocity at the surface of the Moon starting from the velocity

[ S = B V5 T

|

Vv, at infinity of thé Moon (Ul =VV§+L'3).

velocity at entry into the sphere of influence of the Moon.

[0 <}

velocity at the exit from the lunar sphere of influence.
= +ﬁ - V (Figuree 1 and 3). '
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Vo circular velocity at distance R from the center of the Earth /(= qﬂ&ﬁﬁ
v rotation rate of the Moon around the Earth (in circular orbit)-hdvé'
V_  velocity required at infinity for the Earth-Mooh system. ;
o  angle of V& Vi (0 <« <89°332,18"). "
y  gravitational constant of the planet (product of its mass by the
Newtonian constant).
L3
A
o v,
4
%
—= 8 .
— vs — SR — ,,!
;Figure 1.. Decomposition of the | Figure 2. Angle A1 and velocity Bye
A velocities. o

ITI. DESCRIPTION OF THE THEORETICAL PROBLEM

; The problem of the 1uﬁar spring-board effect is a particular case of the
j~prob1em of three bodies. This means that the complete analysis is difficult.
This is why we will analyze a simplified and closely related problem in which

- the Earth is a spherical attracting body of given mass and radius and the Moon
- maintains its libration rate on the ground (2 372 m/s). However, it is assumed

: that it has an infinitesimally:;ﬁéliﬁiadius and mass. In addition we will

. assume that it describes a circular orbit around the Earth with a rotation rate
Vv (1017 w/s). |




Under these conditions the sphere of in-

fluence of the Moon is infinitesimally small

i with respect to the Moon.

‘1imit of the moon's
sphere of influence

Although the error committed is important

VeV eV ~ as far as the duration of the trajectories are
concerned (a parameter which is not of interest

A2
o 05 here), it remains very small as far as the vel~

ocities and the fuel consumption is concerned.

i The problem consists of three phases (Fig-~

| ure 3):

' R . == Phase I: terrestial transfer phase
~ Figure 3. Phases of the B

mission. from a low orbit OB, which is circular,

around the Earth and goes to the Moon;

=~ Phase II: lunar phase with a hyperbolic path between the entry and

departure from the lunar sphere of influence;

~~ Phase III:; terrestial phase in which the required velocity at in-
finity is acquired.

IV. STUDY OF THE THREE PHASES

The study of the lunar phase which consists of a study of optimum trans-
 fers between hyperbolic velocities has already been performed [2 - 4 and 7].
| However, we will describe the fundamental ideas which are involved in the last
»: two phases. This will make it possible to take up the numerical simplified
- study which will be presented.

-,

Let us consider (Figure 4) a transfer orbit O which is tangential to the

-

- low orbit OB at the point P0 and which passes through the poipt S with an entry

oy

1]

with respect to the Earth and infinitely large
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-of the para- |
bolic velo=- - |
cities

/

g Figure 4. Hodograph
: hyperbola.

! Figure 5. Regions of eantry
, velocities.

circumference

velocity VE upon entering the lunar sphere of

~influence (with infinitesimally small radius).
Let X, Y be the componegté of VE with respect

to the system of axes SXY. The velocity hodo-
graph VE for the orbits O is a hyperbola H

_which has the equation

Yor (P —R%) — X2rR® = 2u R (r — R). 1)

The asymptotes of H are the tangents to
the low orbit OB drawn from the point S. It
can be seen that the eccentricity of H is'i.

By considering in Figure 5 the hodograph
hyperbola and the circumference with the center

S and radius L_,, which corresponds to parabol-

s’
‘ic entry velocities, it is possible to obtain

the following partition of the ensemble entry

velocities VE°

ES: <region of elliptic velocities 35

which intersect the Earth.
EE: vregion of external elliptic veloci-‘
ties %ﬁ . .
HM: region of hyperbolic velocities V.

which intersect during ascent. :
HD: region of hyperbolic velocities %ﬁ

which intersect during descent.
HE: region of hyperbolic velecities

ﬁE which are exterior.
Using this partition, it is possible to

étudy the various types of optimum transfers

- in Phase I and to prove that the optimum case only consists of two %mpulses at

the most.

i
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For the lunar Phase II, there are twelve types of optimum transfers which

go from V. to Vz (and do not intersect the ground) [4, 7]. The transfers con~

“sist of tio impulses at the most, except in the P.N.P. case (which includes
the parabolic level) where it consists of six impulsesf The case which will
~ be of interest in the numerical study is the one which is referred to as
"free transfer" in [4, 7]. In this case Vl = V2 and A < 2 Altwhere Vl and VZ
‘are the asymptotic velocities of an identical hyperbolic orbit which does not

~intersect the Moon (Figure 6).

, For the Phase III from vs (velocity at the exit from the lunar sphere of
influence) to Vw it is possible to carry out a study which is similar to the
one for Phase I. One can prove that the optimum case consists of only three

| impulses at the most.

The overall optimum depends on the exit velocity $;° It is possible to
f show that if V_ is large, the savings due to the lunar spring-board effect is
always 92 m/s, the existing velocity VS is parabolic, and the parabola-hyperbolic

{transfer of Phase III is the classical one [S]Qﬁf

‘ 1f,on the other hand, V_ is small (less than 559 m/s), the optimum transfer
is the one shown in Figure 7 with only one tangential impulse at Po and a free

: pass during the lunar phase.

: Finally if V_ has average size the optimum transfer is bi~impulsive (Fig~-.

~ure 8) with one tangential impulse at PO and an impulse at Iz in the vicinity 166
- of the Moon. The lunar phase is of the RF type: grazing plus an impulse at

f a finite distance [4, 7]. The latter case is the one which was studied numer—’

%,ically in an approximate way by replacing the lunar phase of type RF by a free

~ grazing transfer.

V. NUMERICAL STUDY OF A SIMPLE CASE NEAR THE OPTIMUM OF THE
. THREE PHASES '

The numericalsvalﬁés%af the principal parameters which occur in the calcu-

lation are: fy 4
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Figure 6. Free pass.

A3

Figure 8. Optimum ascent

" (case: 559 m/s < V_ < 3.5 km/8).
| R =631816B ki rw=384400 km
Vi = 1,017 km /s Rt 4 4

| ) It i
L = 11,859 km/s  &f)/z = 7,809 km /o
L m2372 km/s Co

R
‘K = -= 001689
r !

| (l/ r Vé)
Co m L —-—] = 3,188 km /s
R+4r 2

Coo = Cd (V,, = 0) = 3,277 km s,

V.1l Direct Ascent

ey o9 & "
Figure 7. Optimum ascent If we neglect the possibility of "the
(case V_ < 559 m/s). lunar spring board effect", the optimum trans-

fer which leads from the low orbit OB at the
velocity %m is the "direct ascent" (Figure 9) which has one single tangential

impulse I. at Pos

1

»

‘-'P
. Il-U—Vc.-
The characteristic velocity of the "direct ascent” is
: I
" o E T




The quantity Cd is shown as a function
of V_ in Figure 12.

The values which are most useful in the

following are:

Ve =0 = C, = 3,217 km s ; i
| Ve -0859km/s=>Cd-3291km11

v

- Figure 9. Direct ascent.

.

V.2 Acquisition of the Velocity at infinity from the Low Orbit.

s
b

; Two cases may be distinguished which are characterized by the value of
V3 | . -

First Case 0 < Vo < 0,588 l:xﬂ/s;‘
The transfer is shown in Figure 10.

Phase I: a tangential impulse at P leads to the orbit o, the
apogee of which is along the lunar orbit. ' ‘

The impulse is therefore:
. P
L=l o — | = 3,188 km [s.
. r+R 2
IVZIQ'apogee velocity at, O =1L l/ K
y. ag = bg
* r+R

= 0,184 km /5.
Phase II: This is a hyperbolic transfer of the free type [4, 7].

and

Phase III:'Thére is no new impulse; therefore
C, =1, = 3,85 km/s.
Depending on the lunar passage distance, V., can be obtained
from zero to 0.559 km/s. This latter case corresponds to a grazing

path. The angle between Vl and V2 is therefore 112.8°' (Figure 10).
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The characteristic velocity of
these transfers is therefore always
equal to I, (3,185 km/s),and the
saving obtained with respect to "the

direct ascent' (Figure 9) is

therefore ;
E=|vE +12—1l)2a—1 .

It increases from 92 m/s to 106 m/s

when V_ increases from 0 to 559 m/s.
Second Case

The transfer is shown in

Figure 11.

 Figure 10. Simple models for VE i Phase I: still consists of a

 apogee velocity of the orbit O. ' tangential impulse at Po which leads
' ' — " to the orbit 0, the apogee of which

n

no longer is the lunar orbit but

~ beyond it.
The impulse is therefore

2The arrival velocity VE upon entry

into the lunar sphere of influence

which must be the same as the one
calculated from the hodograph hyper-
bola (Figure 4).

Figure 11.- Simple model for %.E for Vel FEDR
the hodography hyperbola go-, ‘ F T R cos® e — RY




. Gy (kmls) ) , We obtain the following impulse
: ‘ ‘ . ‘/2 2 1L ;
! CamYL e R} / . from these three equations:

, o A -
10 ; 0 -
i ‘ (1 —K)cos®a VZ

: : ' : ll GIL ———-i————o——~—~—~ »
| . P cos? o — K32 2
it 7" : .

/ / | Phase II:

434
! Thie is a hyperbolic path of the

/ " |Vatmy! free and grazing types [4, 7].
 0gss 5 79 I 15 }

L"A,

f . Phase III:
Figure 12. Characteristic velocity

. of the direct ascent.
There are no new impulses; there~

e For € = Il°
E(m]s) T o
1

? Depending on the impulse Il’ it is

70 cosa(l- K, |
0 EmylL *%‘LVW - possible to obtain V  from 0.559 km/s

"92 23 .
; ' up to infinity which corresponds to

\Q cos o = %; therefore o = 89° 3'2, 25"

~—__  |W(lkm/s)  (limiting angle between V. and VL) .

0 5 0 15 E

The angle between V, and V, (Fi
Figure 13. Characteristic velocity . ¢ ang.e between ¥, and ¥ s
savings due to the lunar spring-" ~ /ure 11) varies between 112.8° and 0°.

- board effect.

The characteristic velocity I1 of the transfers considered as a function

of V_ is given by a very complicated expression.

We have studied the saving function E = C a- Il and it is shown in
Figure 13. The maximum of E is 158 m/s which is obtained for a = 84°.

C, | -
= is the relative saving and is shown in Figure l4.
el . .

c, —

The function %e -



VI. CONCLUSION

y N 5 Use of the "lunar spring-board
26 C'CP:CH/CHWQ % effect" lea&s to considerable char-
B ‘ § acteristic velocity savings which
0 3 0 Kdmwhéjf are always larger than or equal to
92 m/s. 1In particular, for exit
Figure 14. Percentage of saving. velocities from the terrestrial ac-—

tivity sphere less than 3.4 km/s, it
leads to a saving between 92 m/s and 158 m/s, depending on V. if the simpli~ |
: fied model is used with one single tangential impulse near the Earth and a
: "free path" near the Moon.

It will be interesting to study a more complete model with two impulses, -
one near the Earth and the other near the Moon. This model would probably

lead to a maximum savings of about 200 m/s.

Manuseript received January 26, 1970.
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